Zero-temperature directed polymer in random potential on higher dimension

J.M. Kim

Soongsil University

Zero-temperature directed polymer in random potentials on d = 4 + 1 dimension is described. Consider a discrete directed polymer model on a discrete "hyper-pyramid" structure with random potential $\mu(\mathbf{x}, t)$ assigned to each site (\mathbf{x}, t) where \mathbf{x} is the d - 1 dimensional transverse vector and t is the longitudinal length of the polymer.

The polymer starts from the substrate at t = 0 and its path is restricted by $|\mathbf{x}(t) - \mathbf{x}(t+1)| = 0$ or 1. There is a bending energy γ against a transverse jump $|\mathbf{x}(t) - \mathbf{x}(t+1)| = 1$. It represents the stretched energy of the polymer for the transverse jump. As an initial condition, $E(\mathbf{x}, t = 0) = 0$ is given. Then the minimum energy $E(\mathbf{x}, t)$ among all polymers arriving at (\mathbf{x}, t) can be obtained recursively.

Here, we have presented numerical analysis of the directed polymers in 4 + 1 dimensions. The energy fluctuation $\Delta E(t)$ of the polymer grows as t^{β} as function of polymer length t with $\beta = 0.158 \pm 0.007$ and ΔE follows $\Delta E(L) \sim L^{\alpha}$ at saturation with $\alpha = 0.272 \pm 0.009$, where L is the system size. The dynamic exponent $z = \alpha/\beta \approx 1.72$ is obtained. The estimated values of exponents satisfy the scaling relation $\alpha + z = 2$ very well. Our results show that the upper critical dimension of the Kardar-Parisi-Zhang Equation is higher than d = 4 + 1 dimension.

It is known that the directed polymer problem in random potentials belongs to the KPZ universal class. Our results are good agreement with the recent results $\beta \approx 0.158$, $\alpha \approx 0.273$ from the RSOS model in 4+1 dimensions. The estimated β is slightly less than but close to our conjecture 1/6. Considering the finite size effects, our numerical data do not exclude the conjecture. We also estimate z independently from the end to end fluctuation of the path using $\Delta X \sim t^{2/z}$ and obtain $z \approx 1.73$. The transverse fluctuation of the polymer becomes super diffusive.

[l] J.M. Kim, Phys, Rev E 94, 062149 (2016).

[2] M. Kardar, et. al., Phys. Rev. Lett. 56, 889 (1986).

[3] J.M. Kim, S.W. Kim, J. Stat. Mech. 2015, P07010 (2015).